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ABSTRACT
This paper aims to track the 3D posture of the entire arm – both
wrist and elbow – using the motion and magnetic sensors on
smartwatches. We do not intend to employ machine learning
to train the system on a specific set of gestures. Instead, we aim
to trace the geometric motion of the arm, which can then be
used as a generic platform for gesture-based applications. The
problem is challenging because the arm posture is a function of
both elbow and shoulder motions, whereas the watch is only a
single point of (noisy) measurement from the wrist. Moreover,
while other tracking systems (like indoor/outdoor localization)
often benefit from maps or landmarks to occasionally reset their
estimates, such opportunities are almost absent here.

While this appears to be an under-constrained problem, we find
that the pointing direction of the forearm is strongly coupled to
the arm’s posture. If the gyroscope and compass on the watch
can be made to estimate this direction, the 3D search space
can become smaller; the IMU sensors can then be applied to
mitigate the remaining uncertainty. We leverage this observation
to design ArmTrak, a system that fuses the IMU sensors and the
anatomy of arm joints into a modified hidden Markov model
(HMM) to continuously estimate state variables. Using Kinect
2.0 as ground truth, we achieve around 9.2 cm of median error
for free-form postures; the errors increase to 13.3 cm for a real
time version. We believe this is a step forward in posture track-
ing, and with some additional work, could become a generic
underlay to various practical applications.

Keywords
Gesture, arm posture, kinematics, anatomy, tracking, smart-
watch, hidden Markov model, accelerometer

1. INTRODUCTION
Analytics on human leg motion has fueled an industry on mo-
bile health and well being. Nowadays, walking, running, biking
and various other activities can be recognized from motion sen-
sors embedded in smartphones and wearable devices. Under-
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standing upper limb motion seems like the logical next step, and
various research groups/start-ups have already made progress.
Authors in [11, 21, 33, 35], for example, have employed various
machine learning algorithms to detect meaningful arm and hand
gestures – smoking, eating, typing, writing – on wearable wrist
bands. Rithmio [4], perhaps the most advanced start-up in this
space, is eliminating the need for training, so long as the user per-
forms repetitive tasks, such as bouncing a basketball or exercises
in the gym. Finally, for applications requiring full arm posture
reconstruction (e.g., golf swing analysis, animation movie char-
acters), today’s solutions paste multiple sensors on the arm, or
adopt computer vision based analytics [3, 5, 6, 8, 12, 13, 15–17, 20,
23, 28–31, 36, 38, 39]. This paper aims to construct the 3D arm
posture using smartwatch sensors alone, and track the posture
continuously over time, without any training. In addition, we
desire the tracking techniques to be light-weight so they can be
amenable to real time applications.

Before further discussion, we briefly clarify the notion of “pos-
tures” from “gestures”. By posture, we mean the 3D geometric
model of the arm. For a fixed shoulder location, arm posture is
uniquely defined by 3 parameters – elbow location, wrist location,
and wrist rotation. The wrist rotation captures the rotation of the
wrist around the axis of the forearm1. A gesture, on the other
hand, is a specific sequence of arm postures that carry semantic
meaning (somewhat analogous to how words are meaningful se-
quences of alphabets). Hand gestures typically refer to gestures
of the wrist, not necessarily the arm. This paper tracks the entire
arm posture in 3D space over time (similar to a Kinect), and is
expected to serve as building blocks to any application-defined
gesture.

Designing ArmTrak entails 3 key research questions:

(1) The state space of the entire arm is large, meaning that the
elbow and wrist could take up many configurations around the
body. Without any pre-defined patterns to search for, the arm
posture tracking problem translates to a Bayesian tracking prob-
lem in continuous space. While tracking is a mature area in sig-
nal processing, most of the problems are either guided by good
motion models or able to obtain measurements directly from the
object of interest. In our case, smartwatch sensors do not offer
direct measurements from the elbow, are noisy, and lack models
of how the arm is expected to move. To the best of our knowl-
edge (based on literature survey in signal processing, robotics,
and mobile computing), this still remains an unaddressed prob-
lem.

1For a fixed elbow and wrist location, the wrist rotation changes
the palm’s facing direction.



(2) It is possible that continuous space techniques, such as Par-
ticle Filters or an appropriate variant, map to posture tracking.
However, such techniques incur high complexity and latency –
when considering scalability to many users, or the real-time re-
quirements of certain applications, the approaches prove pro-
hibitively expensive. Low complexity and fast run-time are im-
portant factors for a practical end to end system.

(3) The final problem pertains to expressing the arm posture in
different coordinate systems. For applications where a user is
pointing to a TV to turn it on, it is important to understand the
direction of pointing in the global reference frame. For other
applications, like golf-swing analysis, hand posture needs to be
tracked in the torso’s coordinate system. The core problem is
rooted in detecting the human’s facing direction from the watch
sensors. ArmTrak must resolve this problem to cater to various
application needs.

The perspective we bring to the problem pertains to a synthe-
sis of anatomy, sensor fusion, and Bayesian inference. From the
anatomical models of shoulder and elbow joints, we observe that
for a given 3D orientation of the wrist (which is estimated via
sensor fusion using accelerometer, compass and gyroscope), the
space of possible elbow locations is quite constrained. Given
that the elbow is also constrained on a sphere around the shoul-
der point, we can further reduce the search space for the elbow
– called a point cloud. Now, using the (rotation polluted) ac-
celerometer data, we estimate the translational motion of the el-
bow through a hidden Markov model (HMM) framework, but ap-
ply the point cloud as a prior. Once the elbow location is known,
the wrist location is computed as a simple shift along the (fore-
arm pointing) direction prescribed by the wrist orientation. To
cater to applications, we make a series of optimizations, result-
ing in an option to prioritize either accuracy or latency. On one
extreme, Viterbi Decoding yields the best results but after offline
processing; on the other extreme, we compute an averaging on
the point cloud to operate in real-time. Finally, we use a combi-
nation of the watch orientation and the compass to opportunis-
tically estimate the user’s facing direction, ultimately yielding the
arm posture in the desired coordinate system.

We evaluate ArmTrak using Samsung Gear Live smartwatches,
with the sensor data processed on the watch (in real time) as
well as on the cloud (running MATLAB). Recruited volunteers
stand in front of a Kinect 2.0 sensor and perform various kinds
of gestures, starting from simple wrist movements all the way to
random, free-form arm gestures. The skeletal models from the
Kinect serve as ground truth, and we report ArmTrak’s accuracy
as a function of both the wrist location and elbow location errors.
We also report the degradation in our accuracy in exchange for
the improvement in latency. On average, our 〈el bow, wr i st〉
posture tracking results are 〈7.9cm, 9.2cm〉 respectively in the
offline setting, and drop to 〈12.0cm, 13.3cm〉 when performed
in the “fast” mode. More importantly, the tracking errors remain
bounded over time, allowing for continuous gesture recognition
We encourage our readers to watch the video demonstration of
our system here: http://synrg.csl.illinois.edu/posture/.

Besides what is achievable, we must also discuss the shortcom-
ings of the current system. (1) We believe that ferromagnetic
materials in indoor environments can present important rami-
fications on accuracy; our experiments were performed in our
lab with stable magnetic ambience. (2) Our techniques falter
when the user performs gestures while on the move – the sen-
sor data from the motion pollutes both posture tracking and

facing-direction estimation. (3) Finally, gyroscopes are known
to consume energy – we have ignored the energy considera-
tions in developing ArmTrak. In view of these capabilities and
deficiencies, we summarize the contribution in this paper as
follows.

• Using sensor data from smartwatches to track the posture of
the entire arm. Using observations from anatomical models to
constrain the search space for the elbow, a key enabler for 3D
posture tracking.

• Using the accelerometer data as an input to a (modified) hid-
den Markov model, ultimately tracking the motion of the elbow
(and the wrist). Parameterizing the system to achieve different
tradeoffs between accuracy and latency, and offering them as
a single knob to application developers.

2. PROBLEM SETUP
This section discusses the basics of smartwatch motion and pos-
ture tracking, and the deliberations that led us to the proposed
ideas.

2.1 Torso Coordinate System
We will define the posture of the arm, and its motion, in the torso
coordinate system. In this system, the left shoulder will serve as
the origin, and the plane of the user’s torso (i.e., the chest) will
serve as the X Y plane. The Z axis will be the line emanating from
the left shoulder in the frontward direction, perpendicular to the
torso. The Kinect also models its skeleton tracking data in a sim-
ilar coordinate system – since we use the Kinect as ground truth,
aligning our coordinate system with Kinect simplifies our evalu-
ation process.

The torso coordinate system (TCS) is desirable to most applica-
tions, although some need the arm posture to be expressed in a
global (North-East) coordinate system (GCS). For instance, anal-
ysis of gym exercises, golf swing analysis, smoking recognition,
etc., can all be performed in the TCS framework. However, when
controlling devices in a room (e.g., pointing to a TV to turn it
on), the posture of the arm needs to be modeled in global co-
ordinates. The compass on the watch offers the necessary in-
formation to estimate postures in GCS, however, its translation
to TCS requires knowledge of the user’s facing direction. We will
develop the overall ArmTrak system assuming knowledge of the
facing direction, and then relax the assumption through a facing-
direction estimator.

2.2 Wrist/Elbow Orientation and Location
Figure 1 shows the X , Y , and Z axes of a smartwatch when a
user wears it on her left wrist. These axes, that are local to the
watch’s coordinate system, can easily be expressed as vectors in
the torso coordinate system, denoted as ~Xt , ~Yt , and ~Zt (the sub-
script means the vector changes over time as arm moves). We de-
fine the “orientation” of the watch (same as the orientation of the
wrist) as this tuple: 〈~Xt , ~Yt , ~Zt 〉. ~Xt always aligns with the point-
ing direction of the forearm in 3D space, and for a fixed forearm
pointing direction, both ~Yt and ~Zt change along with the rotation
of the forearm around the X axis.

Similarly, location of the elbow or the wrist (same as the loca-
tion of the watch) can also be expressed as a separate 3D tuple,
〈xt , yt , zt 〉, in the torso coordinate system (TCS). Once the wrist
orientation is known, the elbow location and the wrist location
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Figure 1: Smartwatch orientation changes with the pointing di-
rection of the hand – the orientation is measured in the torso’s
reference frame.

are simply a static shift of each other, along the positive or nega-
tive forearm pointing direction (wrist’s ~Xt orientation). The static
shift is the length of the forearm, and thus needs to be known
only once. With this, the posture of the entire arm can be de-
termined in the torso coordinate system. The natural question
is: how can the arm posture be tracked over time? Actually, we
can ask a simpler sub-question: can the wrist location even be
tracked over time? We make a few relevant observations next.

2.3 Noise: The Fundamental Problem
From basic physics, any motion of a body can be decomposed
into translational and rotational motion. Thus, when a wrist
moves from point A to a very close point, B, one can model this
as a translational motion of the watch from A to B, followed by a
change in orientation to reflect the orientation at B. Now, assume
that the initial location and orientation are known at point A, and
the accelerometer and gyroscope are super accurate. Then, the
gyroscope can measure the angular velocity around each of the
~Xt , ~Yt , and ~Zt directions, and precisely estimate the orientation
at point B. The accelerometer, on the other hand, measures
a combination of translational and rotational motion (hence,
plain double integration will not work). Instead, the double
integration can be performed at infinitesimally small time steps,
and after each step, the orientation of the device can be updated
based on the corresponding gyroscope data. In other words, the
system will be able to compute the linear displacements and
rotations at extremely fine granularity, and concatenating them
should result in perfect tracking.

Of course, the above is true under the assumption of perfect IMU
sensors. With noisy sensors, we implemented the same algo-
rithm (and appropriately subtracted gravity) to quantify the ex-
tent of divergence. Figure 2 shows the results – the orientation
divergence is somewhat reasonable2, but the translation error is
excessive, more than 100 meters within 1 minute. In other words,
deterministic techniques will always be affected by the random-
ness of noise; stochastic inference techniques are likely to be the
appropriate approach.

2.4 An Estimation Problem: Particle Filter
The problem we are facing is obviously not new – robotics and
signal processing researchers routinely face and solve these
kinds of estimation problems (also called filtering). Briefly, the
state of the object is modeled as variables and the range of these

2We cannot measure all 3 dimensions of orientation using
Kinect, hence plot the error from 2 dimensions, calculated as the
angular difference between the forearm’s pointing direction and
the ground truth.
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Figure 2: (a) Wrist location error diverges with double integral.
(b) Wrist orientation error remains small over time.

variables together describe the space in which the object can
exist. Then, based on some model of how the object is expected
to move, and what the data reveals about its actual motion,
these estimation algorithms compute the most likely state of
the object. We implemented a particle filter, one of the popular
state estimation algorithms in continuous space. However, given
that the accelerometer and gyroscope data are differentials of
location and orientation, the state of particles had to be defined
with many variables to capture the entire arm posture. This
resulted in a high-dimensional system and the estimator could
hardly converge. We aborted the effort and focused on reducing
the state space of the system for good tracking accuracy.

3. OPPORTUNITY AND VALIDATION
Following the failure of the particle filter, we focused on oppor-
tunities to reduce the state space of the system, i.e., constraining
the possible postures of the arm. This seemed intuitive, i.e., since
the arm joints have limits in their range of motion (RoM) [7, 14],
they should constrain the arm postures as well. In exploring the
arm joints and measurement data, we made the following em-
pirical observation. Assume the shoulder location is fixed. It
appeared that for a fixed wrist orientation, the possible space of
wrist locations is quite limited. In other words, if one moves her
wrist around without changing the wrist orientation, there are
not many locations to which she can take her wrist.

To understand this intuition, let’s first assume that we keep the
elbow location fixed. Consider how the motion of the forearm
will influence the wrist location and orientation. Since the el-
bow does not move, any forearm motion will change the wrist’s
orientation, no matter it is the twist of the wrist/forearm (which
will change ~Yt and ~Zt of orientation) or the rotational motion
around the elbow (which will change ~Xt of orientation and also
change the wrist’s location). Conversely, for a given wrist orien-
tation, only one wrist location is possible (as it has to be along
the ~Xt direction emanating from the elbow), under these artifi-
cial assumptions.

Of course, once the elbow starts moving, the wrist can move to
multiple locations while preserving the same orientation. How-
ever, the elbow can only move on a sphere around the shoul-
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Figure 3: 5 different watch orientations and the corresponding wrist and elbow point clouds (shown in light green and dark red,
respectively). The point clouds (essentially the space of feasible wrist and elbow locations for the given orientation) are relatively
small and narrow down the uncertainty of the user’s arm posture.

der, and the forearm’s ability to twist is relatively limited. This
suggests that for a given wrist orientation, the possible space of
wrist locations may be reasonably restricted. The space will also
vary across orientations, i.e., some wrist orientations will allow
the wrist to move to more locations than others.

3.1 Preliminary Validation
As preliminary validation, we visualized the space of wrist loca-
tions for some wrist orientations. Figure 3 shows 5 example wrist
orientations, along with the corresponding wrist and elbow loca-
tion point clouds, marked in (light) green and (dark) red, respec-
tively. The findings exhibit promise – the wrist location space is
indeed a small fraction of the entire 3D space around the shoul-
der. Also, the elbow and wrist point clouds exhibit a 1:1 mapping,
since they are simply a static shift of one another.

3.2 Formalizing through Arm Models
Figure 3 indicates the opportunity, but we need to generalize
our observation. Therefore, we derived models from human arm
kinematics, and reorganized them to formally express the rela-
tionship of wrist orientation, wrist location and elbow location.
We describe the models here, followed by a quantification of
state space reduction.

In robotics, a human arm is often modeled using 7 rotational de-
grees of freedom (DoF) [22] – 3 for the shoulder, 2 for the elbow,
and 2 for the wrist. Since the watch is worn on the forearm near
the wrist, the DoFs of the wrist are not manifested in the watch’s
sensor data. The remaining 5 DoFs define the state of the watch,
as shown in Figure 4. When these 5 values are combined with the
known lengths of the upper arm and forearm, the watch’s loca-
tion and orientation can be estimated uniquely.

Modeling this mathematically, let θ1, θ2, θ3, θ4 and θ5 denote
the 5 DoFs; let lu and l f denote the lengths of the upper arm and
forearm. Using these, the Denavit-Hartenberg transformation [9]
actually outputs the posture of the entire arm. For example, the
elbow location is a function of θ1 and θ2, and can be expressed
as:

locelbow = f (θ1,θ2) = lu

 cos(θ2) sin(θ1)
sin(θ2)

−cos(θ1) cos(θ2)

 (1)

θ1: Shoulder 
flexion/extension

θ2: Shoulder 
abduction/adduction

θ3: Shoulder 
internal/external 
rotation

θ4: Elbow 
flexion/extension

θ5: Elbow 
pronation/supination

Figure 4: 5-DoF Arm Model showing the possible angular rota-
tions.

and it satisfies

‖ locelbow ‖ = lu (2)

Similarly, the wrist’s relative location to the elbow can also be
computed as

locwrist−to−elbow = g (θ1,θ2,θ3,θ4) (3)

where the function g () is a long equation omitted in the interest
of space, but it of course satisfies

‖ locwrist−to−elbow ‖ = l f (4)

Thus, the wrist’s absolute location can be written as the vectorial
addition of the elbow location and the wrist’s relative location (to
the elbow).

locwrist = locelbow + locwrist−to−elbow (5)

Like location, the orientation of the wrist, expressed in the form
of rotation matrix, can also be computed through a rotational
function on the 5 θs (the function h() omitted in the interest of
space).

Rotwatch = h(θ1,θ2,θ3,θ4,θ5) (6)

In summary, knowing these 5 θs can solve the entire state of the
arm posture, i.e., wrist orientation, wrist location and elbow lo-
cation.



3.3 Mapping Orientation to Point Cloud
For a given watch orientation, we intend to map it to the elbow
and wrist’s location point clouds. We derive the mapping to the
elbow first, because it lies on a sphere around the shoulder which
will later make the model mathematically easier. The translation
from the elbow to the wrist will be a static shift.

Now, to derive the elbow’s point cloud, we first referred to
some medical papers [7, 14, 24] and summarized the average
range of motion (ROM) for each joint angle in Table 1. Here
θ1 = θ2 = θ3 = θ4 = θ5 = 0° refers to the posture where the left
arm is in free-fall on the left side of the torso, with the palm
facing front. Then, for each watch orientation, we find all com-
bination of {θ1,θ2,θ3,θ4,θ5}’s within the ROM that can generate
that orientation according to (6). Each combination will map to
one elbow location according to equation (1). Thus, we obtain a
mapping from Rotwatch to possible locelbow’s. We can also derive
the mapping from Rotwatch to possible locwrist’s easily, because
for each Rotwatch, possible wrist locations are simply a shift of
possible elbow locations, along the forearm’s pointing direction
– the equation described below.

locwrist−to−elbow = Rotwatch

 l f
0
0

 (7)

Algorithm 1 presents the pseudo code.

Joint Angle Min. Value Max. Value
θ1 -60° 180°
θ2 -40° 120°
θ3 -30° 120°
θ4 0° 150°
θ5 0° 180°

Table 1: Range of motions for each joint angle

Algorithm 1 Watch Orientation to Point Cloud Mapping

1: ElbowPointCloud = Empty Dictionary
2: WristPointCloud = Empty Dictionary
3: for all {θ1,θ2,θ3,θ4,θ5} ∈ ROM do
4: locelbow = f (θ1,θ2)
5: Rotwatch = h(θ1,θ2,θ3,θ4,θ5)

6: locwrist−to−elbow = Rotwatch(t )

 l f
0
0


7: locwrist = locelbow + locwrist−to−elbow
8: ElbowPointCloud[Rotwatch].Add(locelbow)
9: WristPointCloud[Rotwatch].Add(locwrist)

10: end for

To quantify the reduction in uncertainty due to this mapping,
Figure 5 plots the CDF of the elbow’s point cloud, as a fraction
of the surface area of the sphere around the shoulder. In 90%
cases, the elbow can only reach 1

4 of whole sphere area, and the
median fraction is 8.3%. Of course, the fraction can be further
reduced if we utilize the fact that these 5 DoFs are not entirely in-
dependent and thus model their RoMs jointly (instead of setting
an upper/lower bound for each of the joint angle). We leave this
optimization to future work.

If the mapped point cloud is moderately accurate (assuming that
the orientation estimation is reasonably error-free), the next step
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Figure 5: Elbow location subspace as a fraction of the sphere
area (around the shoulder) – the state space is certainly
smaller.

is to leverage the point cloud in a state estimation framework.
This motivates a discrete space hidden Markov model, with the
elbow’s point cloud as the prior. We describe these techniques
next, as a part of a full posture recognition system.

4. ARCHITECTURE
Figure 6 illustrates ArmTrak’s overall architecture. The raw sen-
sor data from the smartwatch – composed of the accelerometer,
gyroscope, and compass samples – are passed through an Ori-
entation Estimation Module (OEM). This module computes the
watch’s orientation in the earth’s coordinate system (ECS), using
a borrowed technique called A3 from MobiCom 2014 [40]. Since
the user’s facing direction is unknown, the transformation be-
tween ECS to TCS is still unknown. The Facing Direction Module
(FDM) scans the sensor data stream and opportunistically rec-
ognizes samples that reveal the facing direction. The orientation
is now transformed to TCS and forwarded to the Orientation to
Point Cloud Module (OPM).

OPM consists of a pre-loaded mapping between orientation and
point clouds (the mapping derived from our arm-joint models
described earlier). Using the incoming orientation as an index,
OPM outputs the corresponding point cloud. Not all candidates
may be equally likely, therefore, a separate Posture Priors Module
(PPM) analyzes general human arm motions and extracts priors.
This information is used to bias the posture estimation process
towards the sequences that are more likely in humans.

For applications that require high accuracy in arm posture es-
timation, the outputs of both OPM and PPM are forwarded to
a Hidden Markov Model (HMM), along with the raw sensor
data. The HMM observes sequences of data and estimates the
most likely arm posture sequence. The outputs are favorable to
applications that need higher accuracy and can tolerate latency
in several seconds (even though the HMM has been carefully
optimized for lower complexity). However, if some applications
require a real-time arm posture, the outputs of OPM and PPM
are sent together into an Averaging Filter. This filter computes a
weighted average of all candidate arm postures for the current
orientation, where the weights are guided by the priors. This
serves as a faster but less accurate arm posture tracker.

4.1 Design for Higher Accuracy Postures
We first design for accuracy without latency considerations. As
described earlier, once the orientation of the watch is known,
posture estimation boils down to an elbow tracking problem. If
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Figure 6: System Architecture. The raw sensor data is processed to obtain watch orientation and possible arm postures, and together
with posture priors, they are sent to two different filters to obtain different posture estimations.

the elbow can be tracked, the wrist location can be computed as
a static shift, yielding the complete arm posture. The resources
we have (in addition to sensor data) are two-fold: (1) reasonable
estimates of orientation, even though not precise, and (2) point
cloud of all possible elbow locations, for a given orientation. The
question then is: at any given time, where is the elbow in the point
cloud?

Recall that the point cloud is often quite small – on average, it
covers less than 10% of the sphere around the shoulder (Figure
5). Simply using the average location of the point cloud could
result in a reasonably good estimate of the elbow location. How-
ever, in testing this simple averaging method with various kinds
of gestures, we found much room for improvement. For instance,
consider the punching gesture in Figure 7 – the forearm moves
forward and backward while the orientation remains the same.
The averaging scheme always shows the center of the point cloud
(see Figure 8) since the point cloud remains almost the same for
the entire gesture.

Hand Moving 
Direction

Figure 7: Punching: (a) video frame; (b) point cloud remains
almost the same during punching.

The room for improvement (over simple averaging) arrives from
using the smartwatch sensors as an estimate of the elbow’s mo-
tion. In this specific punching case, the accelerometer data from
the watch can be used to estimate the elbow’s acceleration (in
a straight line), which in turn can be converted to the wrist. In
general, however, this is more complicated since the elbow will
also experience rotational motion – in such cases, its accelera-
tion has to be computed through a fusion of the gyroscope and
accelerometer. To this end, we first introduce techniques to es-
timate acceleration, and then combine this elbow acceleration
with the point cloud constraints to estimate elbow location.
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Figure 8: X coordinate of elbow location. During punching ges-
ture, the orientation of the watch remains almost the same;
therefore the point cloud doesn’t change much over time. As
a result, averaging the point cloud cannot follow the location
of the elbow.

Estimate Elbow Acceleration
For any physical object, the acceleration is simply the second
derivative of the location time series. For the elbow, we have

accele(t ) = d2

dt 2
loce(t ) (8)

Applying Equation 5, we have:

accele(t ) = d2

dt 2 [locw(t )− locwe(t )] (9)

= d2

dt 2
locw(t )− d2

dt 2
locwe(t ) (10)

The first term in Equation 10, d2

dt 2 locw(t ), is simply wrist’s accel-
eration in torso coordinate system, which we can get by project-
ing watch’s accelerometer readings into torso coordinate system
using estimated watch’s orientation, Rotwatch:

d2

dt 2
locw(t ) = Rotwatch(t ) accelwatch(t ) (11)

The second term in Equation 10, d2

dt 2 locwe(t ), is the acceleration
caused by wrist’s relative motion to the elbow. According to equa-



tion 7, we can express this as:

d2

dt 2
locwe(t ) = d2

dt 2

Rotwatch(t )

 l f
0
0

 (12)

Now, combining Equation 11 and Equation 12, we can re-write
Equation 10 as

accele(t ) = Rotwatch(t ) accelwatch(t )

− d2

dt 2

Rotwatch(t )

 l f
0
0

 (13)

Equation 13 shows that given watch’s accelerometer data and our
estimation on the watch’s orientation, the elbow acceleration can
be inferred.

Estimate Elbow Location
Given the measured elbow acceleration, as well as the point
clouds (on the sphere) on which the elbow must be located,
we now ask the following question: which sequence of elbow
locations best matches the measured elbow acceleration? To
intuitively understand this problem, let’s assume there are N
locations that the elbow can possibly reach – this can be viewed
as the union of all point clouds for the elbow. Assume the motion
sequence contains T time steps. Since the elbow can be at any of
the N locations at a given step, the possible number of sequences
is N T , which is the search space for tracking the elbow. One of
the sequences is optimal and our goal is to find this sequence.
Hidden Markov Models (HMM) are well suited to solve this prob-
lem due to its dynamic programming construction for efficiently
searching the state space.

Modified HMM for Elbow Tracking
If we group 3 locations (at 3 consecutive time steps) as the state of
the elbow, then elbow acceleration can be encoded in one state.
By using the estimated acceleration as observation and prop-
erly designing transition probabilities, finding the best elbow
location sequence reduces to the Viterbi algorithms (solvable
in polynomial time). Viterbi Decoding has a time complexity
of O(|S|2T ), where |S| is the state space size and T is the total
number of time steps. In the above HMM formulation, the state
space size is N 3, since each state is a location triple. As a result,
the time complexity is O(N 6T ). In trying to reduce the running
time, we reorganized the state definitions. Specifically, we apply
the continuity constraint, move the emission probability into the
transition probability, and |S| can be greatly reduced by allowing
each state to contain only two locations. The time complexity is
reduced to O(N 3T ). The details are below.

For the ease of the description, let’s assign each possible el-
bow location on the sphere a location ID, ranging from 1 to N.
Let’s also denote the T time steps of the motion sequence as
t1, t2, ..., tT , and the time step length as ∆T .

• State definition: Each state is defined as a pair of elbow loca-
tions:

statei =< loce
(i1), loce

(i2) > (14)

where loc(i1)
e and loc(i2)

e are the locations with location IDs i1
and i2, which together uniquely define the i -th state.

In our HMM formulation, we use a state to represent the elbow’s
previous location and current location. In this representation, if

the state at time tk is statei , it means that the elbow location is

loc(i1)
e at tk−1 and loc(i2)

e at tk .

At first glance, the size of state space is N 2. However, observe that
the human’s elbow movement is limited to a maximum speed,
thus given a small time step, the elbow can only move within a
small range. We can actually eliminate those states whose loca-
tion pairs are separated by larger than this range. In this way, the
size of state space is reduced to αN 2, where α is much smaller
than 1.

• Prior probability: Since we do not know the initial elbow loca-
tion, we set the prior probability to be uniform:

Π(statei ) = 1

αN 2
for any i (15)

• Transition probability: From current time tk to next time
tk+1, the transition probability from statei to state j , denoted as
Pr (state j | statei ; tk , tk+1), contains three terms.

First, since the elbow trajectory is continuous, statei and state j
must share the same location at the common time step tk . This
continuity constraint actually helps reduce the time complexity
from O(N 4T ) to O(N 3T ).

statei =< loce
(i1), loce

(i2) >
state j =< loce

( j1), loce
( j2) >

loce
(i2) = loce

( j1)

(16)

We can express this limitation as an indicator function:

Pr1 = I loce
(i2) = loce

( j1) (17)

Second, instead of using measured elbow acceleration as an ob-
servation in the location triple, here we directly model that prob-
ability into the transition probability between two location tu-
ples. To be more specific, we can calculate the speed encoded
in each state and derive acceleration using the speed of the two
states:

velocity j =
loce

( j2) − loce
( j1)

∆T

velocityi =
loce

(i2) − loce
(i1)

∆T

acceli , j =
velocity j −velocityi

∆T

(18)

This acceleration, acceli , j , is expected to be close to our observed
acceleration accelobserve(tk ). We assume that the error distribu-
tion of the observed acceleration is a zero mean Gaussian distri-
bution with a standard deviation of σaccel. Therefore, we have:

Pr2 = 1p
2πσaccel

e(acceli , j −accelobserve(tk ))2/(2σ2
accel) (19)

Third, in the new state j , the elbow location loce
( j2) must be in-

side the point cloud inferred at time tk+1.

Pr3 = I loce
( j2)∈PointCloudtk+1

(20)

In sum, the transition probability is the product of these three
probabilities:

Pr (state j | statei ; tk , tk+1) = Pr1Pr2Pr3 (21)



• Emission probability: Since we have already integrated the ob-
served acceleration into transition probability, emission proba-
bility is simply set as 1. Thus, we only use the output of Viterbi
decoding – it is a sequence of states and the second element of
each state is the estimated elbow location. Figure 9 shows the
improved elbow tracking results (in this toy punching case) us-
ing HMM.
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Figure 9: X coordinate of elbow location. Results from HMM
better capture the location of the elbow.

• Facing Direction: We opportunistically sense the facing direc-
tion when the user’s hand is in the vertical free-fall posture, or
swinging through this position perhaps while walking. At this
point, the X axis of the gyroscope is exactly pointed in gravity’s
direction, implying that the negative Y is the facing direction. We
also observe that the hand swings to a small degree in this posi-
tion and we utilize this to gain confidence.

4.2 Designing for Fast Posture Tracking
For the applications on smartwatches that require instantaneous
posture information, the tracking algorithm must be light-
weight in order to fit into the watch’s limited computing power.
As hinted earlier, we adopt a simple weighted averaging filter.
This filter accepts (1) the point cloud of arm postures and (2) the
corresponding prior from past measurements, and then outputs
a weighted average of all the points in the cloud. The weights
are determined by the probability density of each location – the
more common postures will naturally bias the estimates. The
weighted average is expressed as:

loce =∑
i

loci
e

Pr (loci
e)∑

Pr (loci
e)

(22)

locw = loce +Rotwatch(t )

 l f
0
0

 (23)

As an outcome of averaging, the results are naturally quite
smooth. Also, the averaged 3D location (for each point cloud)
can be stored in a lookup table, indexed by the orientation cor-
responding to the point cloud. For a given orientation from the
Orientation Estimation Module, the smartwatch simply looks up
the elbow location from this table, computes the corresponding
wrist location, and outputs the posture. Both memory and CPU
footprint is marginal.

5. EVALUATION
This section discusses the experiment methodology and perfor-
mance results of ArmTrak.

5.1 Implementation
ArmTrak is implemented on the Samsung Gear Live smartwatch
using JAVA as the programming platform. The accelerometer
and gyroscope are both sampled at 200H z and the magnetic
field sensor is sampled at 100H z. The smartwatch runs the light-
weight real-time version of ArmTrak to report instantaneous arm
posture. The sensor data and light-weight arm posture estimates
are stored locally and transferred to the ArmTrak server for anal-
ysis. The server side code is written in MATLAB and implements
the full version of ArmTrak to provide offline, higher accuracy,
posture estimates.

5.2 Methodology
We recruited 8 volunteers, including 6 males and 2 females, for
our experimentation – the volunteers are all students in CS/ECE.
The volunteers were asked to wear a Gear Live smartwatch dur-
ing our experiment. Their upper arm and forearm lengths, lu and
lf, were measured beforehand.

Experiments with each volunteer were executed in 3 sessions. In
the first session, volunteers were asked to move their arms to-
tally freely for 3 minutes. Users performed random, meaningless,
arm gestures – we requested them to not move their hands be-
hind their backs to avoid losing ground truth from the Kinect. In
the second session, we deliberately asked the volunteers not to
put their elbows above the shoulder. The goal is to mimic real-
world scenarios where most of the gestures need the elbow to
be at lower heights. Under this constraint, the volunteers again
moved their arms freely for 3 minutes. In the third session, vol-
unteers were asked to repeat a set of pre-defined gestures for 10
times. The gesture set contains eating, drinking, boxing, bounc-
ing a basketball, weight lifting, drawing a circle, drawing a trian-
gle, drawing a square, and writing numeric digits in the air. Dur-
ing the whole experiment, a Kinect 2.0 was placed in front the
volunteer to record ground truth. We prevent any movement in
the background since that affects Kinect’s ground truth calcula-
tions.

5.3 Performance Results
The following questions are of our interest in this section:

1. How well can ArmTrak track arm postures in general?

2. How does ArmTrak’s performance vary among different
users and with pre-defined gestures? Are certain gestures
better than others?

3. Will error accumulate and ArmTrak’s tracking diverge over
time?

4. Accuracy and latency tradeoffs with the real-time version
and the offline cloud version.

5. 2D shapes of different objects and digits drawn by users –
a subjective measure.

In all these results, we measure error for every time step (i.e., out-
put of HMM) and draw the CDF over all measurements.

(1) How well can ArmTrak track arm postures?
Figure 10 (a) and (b) show the CDF of tracking errors for the el-
bow and wrist, respectively. The results are for the higher ac-
curacy HMM version. For free-form motion (where users per-
formed completely random gestures), the median errors for the
elbow and wrist are around 7.9cm and 9.2cm. Once the elbow



was restricted to remain below the shoulder, the error reduced
further to 6.6cm and 8.3cm for the elbow and wrist, respectively.
Finally, for pre-defined gestures like “eating”, “weight lifting”, etc.,
we use the ground truth information from the 7 other users as
priors for the 8th user, and perform cross-validation. Observe
that the median error drops even further to 4.5cm and 5.7cm for
elbow and wrist on average. Compared to the volunteers’ average
arm length of 50.2cm, we believe ArmTrak’s accuracy, with mini-
mal prior information, makes it amenable to most gesture recog-
nition applications, including gaming control, TV control, and
daily activity patterns such as eating or exercising. Of course, the
results can improve appreciably with more application-specific
prior information.
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Figure 10: (a) ArmTrak’s performance on elbow tracking. (b)
ArmTrak’s performance on wrist tracking.

(2) How does ArmTrak’s performance vary across
different users and pre-defined gestures?
Figure 11 plots the performance across different users. We
observe that performance is consistently high across all users,
across all the 3 categories – pre-defined gestures, limited elbow
range, and free motion. Also, the trend that pre-defined gestures
are generally better than limited elbow range cases, and limited
elbow range better than free-motion cases, holds across the
users. The performance is worst for user 7. On examining the
Kinect video, we find that user 7 moved that hand extremely fast.
Still, the errors were around 10cm.

Figure 12 plots ArmTrak’s performance across all types of 8 ges-
tures. Evidently, the performance did not show major variations
across gestures, suggesting that the system is not biased to any
patterns. Considering the fact that the prior is only obtained
from 7 other users, we gained confidence that by improving the
prior, ArmTrak can be generalized to and work well on other
pre-defined gestures.

Upon comparing the performance among these gestures, we find
that “Eating” has the best performance and “Drawing a triangle”
is the worst. We again look into the Kinect video data and find
that when volunteers were performing “Eating” gestures, their el-
bow only moved in a smaller region, while with “Drawing a trian-
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Figure 11: ArmTrak’s performance on (a) elbow and (b) wrist
tracking, for different users.

gle”, the shape, size and position where they drew the triangle are
all different, incurring a far greater elbow range.
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Figure 12: ArmTrak’s performance on (a) elbow and (b) wrist
tracking, for different activities.

(3) Will error accumulate and ArmTrak’s perfor-
mance degrade over time?
ArmTrak attempts to find a sequence of smartwatch locations
(from the changing point clouds) that best matches with the ob-
served acceleration data. This global optimization within point
clouds ensures that the error will not accumulate over time, as it
does with unconstrained double integration. One may argue that
this optimization is performed offline over the whole motion se-
quence, thus intermediate states also benefit from future data.
Therefore, characterizing the errors at every intermediate state,
with no look-ahead into the future, is also of interest.

To understand the impact, we performed another experiment in



which we ask the HMM to traceback to each timestamp and re-
port the instantaneous location estimate at that point. Figure 13
shows the general wrist tracking error trend for 3 volunteers. Al-
though this error is higher than applying the global Viterbi De-
coding over the whole sequence, the error still does not accumu-
late. We believe this is perhaps the most important property of
ArmTrak.

0 20 40 60 80 100 120 140

Time in Seconds

8

10

12

14

16

W
ri
s
t 
L
o
c
a
ti
o
n
 E

rr
o
r 

(c
m

)

User 1

User 2

User 3

Figure 13: The general (smoothed) trend for wrist location er-
ror over time.

(4) Performance and latency tradeoffs between
real-time version and offline version
Figure 14 shows the comparison of tracking accuracy for both
elbow and wrist, using real-time and offline algorithms. Recall
that the real-time algorithm computes a weighted average of the
point cloud and stores a lookup table in the watch, indexed by
3D watch orientation. Compared with the offline algorithm, the
median error of the real-time version increases to 12.0cm for the
elbow and 13.3 cm for the wrist. Although high, the real-time
version also remains stable over time. The reader is requested to
visit the project website – http://synrg.csl.illinois.edu/posture/ –
for a number of real-time and offline video demonstrations.
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Figure 14: Performance comparison between offline (HMM)
and real-time(simple averaging).

We computed the delay of both offline and real-time versions of
ArmTrak. The real-time version running on the watch is essen-
tially a look-up with orientation as index – even for very high
update rate the lookup time is negligible. The delay of offline-
version contains both the network upload/download delay of the
sensor data, plus the computation time at the cloud (i.e., running
MATLAB on a quad core graduate student desktop). The results
are reported in Table 2 for 5Hz update frequency (i.e., HMM up-
dates 5 times per second). Evidently, longer gesture data incurs
almost a 10x increase in computation.

(5) What shapes have been inferred by ArmTrak?
Figure 15 shows some sample trajectories of the wrist, when
users were asked to draw shapes and digits in the air. Although

Trajectory Time 10s 30s 1min 3min
Delay 98.2s 289.3s 9.1min 26.9min

Table 2: Latency of offline version increases with increase in the
trace length. This is because Viterbi Decoding computes the
globally optimal sequence of states, and incurs O(N 3T ) com-
plexity.

the reproduction is not perfect, ArmTrak tracks the trend of the
trajectory quite well. All users expressed satisfaction when they
were shown the shapes that they drew in the air. For more com-
plex situations, we asked the user to draw complicated shapes
like a “star” or an “Olympic ring”. Figure 15(c) shows one such
case where the user drew for almost 1 minute – ArmTrak was
consistently able to track the 3D shape.
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Figure 15: ArmTrak’s tracking result for (a) writing four dig-
its, (b) drawing simple shapes, (c) a complicated 3D trajectory
(only Z axis is shown).

6. LIMITATIONS AND NEXT STEPS
A few more technical pieces will need to come together before
ArmTrak can be viewed as a usable technology – we discuss these
below.

(1) Facing Direction and Tracking on the Move: We opportunis-
tically estimate the user’s facing direction when her hand is in
the vertical free-fall posture, or swinging through this position
perhaps while walking. Admittedly, we have not stress-tested
this and are not confident this would scale in completely un-
controlled situations. For instance, if a user is sitting for a long
duration, the free-fall opportunity may not arise, but the user
may change her facing direction (perhaps by swiveling her
chair). A deeper treatment of facing direction is necessary to



better ground the initial state of the watch. On related lines,
ArmTrak will falter when the user is on the move – we have side-
stepped this case, but plan to evaluate the extent of degradation
in future.

(2) Need for More Speed: The Viterbi Decoding is running on a
quad-core student desktop and is roughly producing results at
10x rate. This means that tracking the arm motion for τ seconds
requires 10τ seconds of processing time. Of course, more hard-
ware on a cloud can certainly bring down this latency, but the
more important question pertains to whether more speedup is
possible. We believe some degree of optimization (such as beam
search) and parallelism would be possible inside the dynamic
programming; we also believe a marginal sacrifice in accuracy
can offer considerable speedup. The latency-accuracy tradeoff
proved far richer than we anticipated and we intend to investi-
gate this thoroughly in future.

(3) Energy Consumption: We have ignored the energy implica-
tions of our technique. For the real time system, we expect the
weighted averaging technique to impose minimal energy bur-
den. For the HMM/Viterbi model, we expect the system to run on
the cloud – thus the energy consumption mainly emerges from
network uploads. We have not characterized this overhead, how-
ever, it appears that many offloading applications are viable un-
der this model. This is perhaps because most applications are
likely to be on-demand (e.g., the user turns on the app during
her visit to the gym and turns off thereafter). Further, some apps
can tolerate latency and can delay the uploads until the watch is
connected to power.

7. RELATED WORK
Gesture/posture recognition has been studied from various per-
spectives. The literature is vast, but we sample the most relevant
ones, mainly from computer vision and wearable motion sen-
sors.

Computer vision: Camera data has been used to track and
analyze human motion across different granularities [19]. At a
lower granularity, humans can be automatically detected [10]
and tracked with bounding boxes [34], using the video feeds
from cameras. Beyond bounding boxes, human activity can also
be recognized from camera data via machine learning [26, 27].
At a higher granularity, pose estimation is a classical problem
in human motion analysis, where the common approach is
applying probabilistic models on the static RGB image or video
sequence [6, 13, 15–17, 20, 23, 28, 29, 31, 36]. More recently, depth
information has also been leveraged in the pose estimation so-
lution landscape [3, 30]. For instance, Microsoft Kinect [3] fuses
RGB and depth image to track the locations of the human’s joints
for video gaming. One of the key differentiators between vision
and sensing based approaches is that vision must estimate 3D
motion from the 2D views – a challenging task. However, vision
benefits from knowing the pixel locations far more precisely
compared to the noise from sensor hardware.

Wearable motion sensors: Previous research has shown that
embedded motion sensors on wearable devices can be used for
human activity recognition [18]. Industry on mobile health and
well being uses these sensors to recognize a user’s leg motion
such as walking, running, etc [1, 2]. To measure meal intake, Bite
Counter [11] uses a watch-like device with a gyroscope to detect
and record when an individual has taken a bite of food. RisQ [21]
leverages motion sensors on wristband to recognize smoking
gestures. MoLe [33] analyzes motion data of smartwatches from

typing activity to infer what the user has typed. Xu et al. [35]
classified hand/finger gestures and written characters from
smartwatch motion sensor data. However, all these motion anal-
ysis systems are designed for recognizing specific pre-defined
motion patterns, as opposed to blind estimation of free-form
postures. Similarly, authors in [25, 32] tried to reconstruct full
body motion from multiple wearable devices by comparing
accelerometer data with those generated from motion cap-
ture databases. However, the reconstruction relies heavily on
the similarity of training and testing accelerometer data and
the disparity between different motion classes inside training
databases, and as a result, neither can they track free-form arm
motion.

Zhou et al. [38, 39], Cutti et al. [8], and El-Gohary et al. [12] stud-
ied general upper limb movement tracking using motion sen-
sors. However, they require users to be instrumented with mul-
tiple sensors on the arm. Perhaps the closest to our work is [37],
where authors claimed to be able to track the upper limb by only
mounting motion sensors on the wrist. However, the system is
only evaluated on 1 subject, moving his arm up-to-down in a
plane perpendicular to the ground. The same gesture is repeated
constantly and lasted less than 15s. As a follow up to this work,
the authors published a subsequent paper with multiple sensors
on the arm to scale to a larger vocabulary of gestures [38, 39]. In
contrast, our system is tested with free-form motion, has been
tested up to 3mins without signs of divergence, and has demon-
strated robustness to all 8 test users. We believe this is an im-
provement over the state of the art.

8. CONCLUSION
This paper is an attempt to estimate/track the geometric motion
of the human arm, using only the inertial sensors on the smart-
watch. The problem is challenging primarily because the smart-
watch is a single point of measurement on this otherwise large
space of possibilities. Moreover, the measurements are noisy,
making continuous tracking over longer time scales even more
difficult. We develop ArmTrak, a system that distills observations
from human kinematics, and uses them carefully inside a (mod-
ified) HMM framework. Our results are encouraging, and with
some more effort, could become a useful underlay to a broad
class of gesture-based applications.
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